Polar Substituents and the Luminescence of Organic Compounds. Part 3.¹ Structural Determinants

By Leslie A. King, 82 Tedder Road, Acomb, Yorkshire YO2 3JF

Further data are presented to illustrate the relationship of the $S_1 \rightarrow S_0$ non-radiative rate constant and the triplet energy of homologous series with Taft polar substituent constants. The magnitude of the inductive effect exerted by a given substituent depends on the site of substitution and the number of π electrons in the chromophore.

LINEAR free energy relationships (l.f.e.r.s) have three uses in organic chemistry. First, a body of data may be summarised by relatively few parameters. Secondly,

FIGURE 1 Inductive effect of α - and β -substituents on the triplet energy, $\Delta E(T_1 - S_0)$, of naphthalene. $\Sigma \sigma^*$ refers to all sub-stituents including hydrogen. The straight lines represent the least-squares fits. a, 1-Methyl; b, 1-methoxy; c, 1-chloro; d, 1-bromo; e, 1,5-dibromo; f, 2-chloro; g, 2-bromo; h, 2,6-dibromo; i, naphthalene. Data for compounds a and b from ref. 4, remainder from ref. 3, determined at 77 K

the behaviour of untested members of a series may be interpolated or extrapolated, and finally, the reaction constant (ρ) provides insight into the mechansim.

The extension of l.f.e.r.s to the physical properties of molecular excited states 1,2 has similar objectives, although p now has a different interpretation and is more conveniently described by two new sensitivity constants, ε_f and ε_p .¹ This paper presents further correlations of the $S_1 \longrightarrow S_0$ non-radiative rate constant (k_1) and the triplet energy, $\Delta E(T_1 - S_0)$ of homologous

[†] The Taft σ^* scale of ground state polar substituent con-stants appears to be equally suitable for describing excited state processes. However, fluorine and groups containing fluorine are exceptions to this rule. Although $\sigma^*(Cl) \simeq \sigma^*(F) = 3.08$, fluorobenzene is considerably more fluorescent than chloro-benzene.⁵ In the correlation of substituted benzenes,² 1,4bis(trifluoromethyl)benzene was omitted. The calculated value of $\Sigma\sigma^{*} - 3\sigma^{*}(H)$ for this derivative is 5.64 whereas the non-radiative rate constant ($\log_{10} k_1/s^{-1}$ 7.70) suggests that $\Sigma\sigma^{*} - 3\sigma^{*}(H)$ is close to 1.5. With α - and β -fluoronaphthalenes³ the energy of the 0-0 phosphorescence band is much greater than expected. It is therefore concluded that fluorine has a relatively low electronegativity in the excited state. The above data are consistent with $\sigma^*(F) = \sigma^*(CF_3) \simeq 0.5$.

series with Taft polar substituent constants, and identifies those features of the substituted molecule which determine the magnitude of the inductive effect.

Naphthalenes.-Figure 1 shows the effect of substitution on the 0-0 phosphorescence band of naphthalene.^{3,4} α -Substitution produces a more marked effect ($\varepsilon_p 0.67 \text{ kcal mol}^{-1}$; r 0.99, $P \ll 0.001$) than β substitution ($\varepsilon_p 0.27$ kcal mol⁻¹; r 0.99, $P \ll 0.001$). These data exclude fluoronaphthalene.[†]

Biphenyls.—The relationship between $\log_{10} k_1$ and $\Sigma \sigma^*$ for 4-substituted biphenyls is illustrated by Figure 2. The non-radiative rate constant has been calculated from the equation $k_1 = (1 - \theta_f) / \tau_f$ by using the fluorescence quantum yields (θ_f) and fluorescence decay times (τ_f) given by Berlman.⁶ Substitution of a phenoxy-group

FIGURE 2 Relationship between the non-radiative decay constant k_1 and Taft polar substituent constants in 4-biphenyls. $\Sigma \sigma^*$ refers to all substituents including hydrogen. The straight line is the least-squares fit (compound g excluded). a, 4-Isopropyl; b, 4-methyl; c, 4-benzyl; d, biphenyl; e, 4-methoxy; f, 4,4'-di-isobutoxy; g, 4-phenoxy; h, 4,4'dimethoxy. Data from ref. 6 determined at room temperature

in biphenyl (compound g in Figure 2) leads to an anomalously high value of k_1 . Diphenyl ether behaves

- ¹ Part 2, L. A. King, J.C.S. Perkin II, 1977, 919. ² L. A. King, J.C.S. Perkin II, 1976, 1725.

³ J. Ferguson, T. Iredale, and J. A. Taylor, J. Chem. Soc., 1954, 3160.

⁴ C. A. Parker, 'Photoluminescence of Solutions,' Elsevier, London, 1968.

⁵ R. T. Williams and J. W. Bridges, J. Clin. Path., 1964, 17, 371.

⁶ I. B. Berlman, 'Handbook of Fluorescence Spectra of Aromatic Molecules,' Academic Press, New York, 1971.

similarly,² and in both cases intramolecular energy transfer may make an important contribution to the

FIGURE 3 Polar substituent effect on the phosphorescence maximum $(\bar{v}_{p,max})$ of substituted fluorescein dianions. The straight line is the least-squares fit. $\Sigma \sigma^*$ refers to four replaceable hydrogen atoms in the xanthenone ring system. a, Iodo; b, bromo; c, di-iodo; d, dibromo; e, tri-iodo; f, tetraiodo; g, tetrabromo. Data from ref. 7 determined at 90 K

overall non-radiative decay of S_1 . The regression line in Figure 2 excludes 4-phenoxybiphenyl ($\varepsilon_f 0.074$ kcal mol⁻¹; r 0.81, P < 0.05).

Fluoresceins.—The correlation of the phosphorescence maxima of bromo- and iodo-substituted fluorescein dianions with $\Sigma \sigma^*$ is shown in Figure 3 (ε_p 0.48 kcal mol⁻¹; r 0.92, P < 0.01). Although such substitution is primarily in the xanthenone ring system, geometric isomers have not been separated.⁷ Furthermore, these data are based on peak maxima rather than the 0–0 bands, and hence the value of ε_p should be taken as an approximation.

 ε_t , ε_p , and Molecular Structure.—In a symmetrical molecule, it has been predicted that the inductive effect of a given substituent, as measured by ε_f or ε_p , will be inversely related to d, the distance of the substituted ring atom from the centre of symmetry.¹ Figure 1 demonstrates this effect in substituted naphthalenes. If a uniform bond length is assumed, then the ratio $\varepsilon_p(\alpha)$: $\varepsilon_p(\beta)$ of 2.5 is very close to that expected from an interaction having a distance dependence proportional to $1/d^3$.

The sensitivity constants, ε_f and ε_p , will also be determined by the size of the chromophore, or, more precisely, the number of conjugated π -electrons. The polar effect of a substituent modifies the potential energy of the π -electrons.² This perturbation will decrease as the number of π -electrons (n) in the chromophore increases. Clearly n is related to d in so far as when n is small, dmust also be small. The relationship between ε_f , ε_p , and molecular structure may be visualised by assuming that the inductive effect has a limited range. In large molecules, the majority of π -electrons will not experience the electrostatic field of a given substituent. The

Summary of se	isitivity	constants
---------------	-----------	-----------

Series	ε₁/kcal mol ⁻¹	ε _p /kcal mol ^{−1}	d/Å ⁰	Solvent
Benzene ^b	0.51		1.39	Cyclohexane
4-Cyclohexadienone ^b		1.57	1.39	ÉPA •
α-Naphthalene ^d		0.67	1.84	Petroleum
β-Naphthalene ^d		0.27	2.51	Petroleum
4-Biphenyl ^d	0.074		3.48	Cyclohexane
α-Anthracene °		0.22	2.78	EPA
meso-Anthracene °	0.34		1.39	Ethanol
Fluorescein dianion d		0.48		EPA

^a Distance from substituted ring atom to centre of symmetry. For 4-cyclohexadienones, d 1.39 Å is an estimate. In the fluorescein dianions, the sites of substitution and the extent of the chromophore are uncertain. ^b Ref. 2. ^c Ref. 1. ^d This work. ^e EPA = ethanol-isopentane-ether.

Table provides a summary of the available sensitivity constants together with values of d based on a standard bond length of 1.39 Å. Figure 4 shows the relationship between $\varepsilon_{\rm f}$, $\varepsilon_{\rm p}$, and the reciprocal of nd^3 , an empirical measure of molecular size and site of substitution.

When used in conjunction with a table of Taft σ^* constants, Figure 4 enables predictions to be made for

FIGURE 4 Relationship between sensitivity constants and molecular structure where n is the number of π -electrons in the chromophore

certain excited state properties of symmetrical organic molecules.

With asymmetrical molecules, variously positioned substituents could be used to probe the distribution of π -electron density in the chromophore.

[7/1375 Received, 28th July, 1977]

⁷ L. S. Forster and D. Dudley, J. Phys. Chem., 1962, 66, 838.